AMBER 24 update 3
ウェブページ
バージョン
Amber24 update 3, AmberTools 24 update 8
ビルド環境
- GCC 13.1.1 (gcc-toolset-13)
- CUDA 12.4 update 1
- OpenMPI 4.1.8 (CUDA-aware)
- MKL 2025.0.0.1 (oneAPI 2025.0.1)
- (Gaussian 16 C.02; QM/MM テストにのみ使用)
ビルドに必要なファイル
- Amber24.tar.bz2
- AmberTools24.tar.bz2
ビルド手順
#!/bin/sh
VERSION=24
TOOLSVERSION=24# amber24 upadte 3 + AmberTools24 update 8
INSTALL_DIR="/apl/amber/24u3"
WORKDIR="/gwork/users/${USER}/amber24"
TARBALL_DIR="/home/users/${USER}/Software/AMBER/24"PARALLEL=12
#----------------------------------------------------------------------
module -s purge
module -s load gcc-toolset/13
module -s load openmpi/4.1.8/gcc13-cuda12.4u1
module -s load cuda/12.4u1
module -s load mkl/2025.0.0.1
module -s load gaussian/16c02
export LANG=C
export LC_ALL=C
ulimit -s unlimited# install directory has to be prepared before running this script
if [ ! -d $WORKDIR ]; then
echo "Create $WORKDIR before running this script."
exit 1
fi# build directory must be empty
if [ "$(ls -A $WORKDIR)" ]; then
echo "Target directory $WORKDIR not empty"
exit 2
fi
# install directory must be empty
if [ "$(ls -A $INSTALL_DIR)" ]; then
echo "Target directory $INSTALL_DIR not empty"
exit 2
fi
# prep files
cd $WORKDIR
if [ -d amber${VERSION}_src ]; then
mv -f amber${VERSION}_src amber_erase
rm -rf amber_erase &
fitar xf ${TARBALL_DIR}/Amber${VERSION}.tar.bz2
tar xf ${TARBALL_DIR}/AmberTools${TOOLSVERSION}.tar.bz2# prep python and update
cd amber${VERSION}_src
#export AMBERHOME=${WORKDIR}/amber${VERSION}_srcsed -i -e "1s/env python/env python3/" update_amber
python3.9 ./update_amber --update
yes | python3.9 ./update_amber --upgrade
python3.9 ./update_amber --update
# CPU serial with installation of tests
echo "[CPU serial edition]"
mkdir build_cpu_serial && cd build_cpu_serial
cmake .. \
-DCMAKE_INSTALL_PREFIX=${INSTALL_DIR} \
-DCOMPILER=GNU \
-DMPI=FALSE \
-DCUDA=FALSE \
-DINSTALL_TESTS=TRUE \
-DDOWNLOAD_MINICONDA=TRUE \
-DBUILD_QUICK=TRUE \
-DCHECK_UPDATES=FALSE
#make -j${PARALLEL} install && make clean
make install && make clean
#cd ../ && rm -rf build_cpu_serial
cd ../
# mark its origin at installation directory
cd ${INSTALL_DIR}
ln -s ./miniconda ./miniforgecd ${WORKDIR}/amber${VERSION}_src
# reuse installed python
AMBER_PYTHON=${INSTALL_DIR}/bin/amber.python
eval "$(${INSTALL_DIR}/miniforge/bin/conda shell.bash hook)"
# CUDA, serial, gcc
echo "[GPU serial edition]"
mkdir build_gpu_serial && cd build_gpu_serial
cmake .. \
-DCMAKE_INSTALL_PREFIX=${INSTALL_DIR} \
-DCOMPILER=GNU \
-DMPI=FALSE \
-DCUDA=TRUE \
-DINSTALL_TESTS=FALSE \
-DDOWNLOAD_MINICONDA=FALSE \
-DUSE_CONDA_LIBS=TRUE \
-DPYTHON_EXECUTABLE=${INSTALL_DIR}/miniconda/bin/python \
-DCUDA_TOOLKIT_ROOT_DIR=${CUDA_HOME} \
-DBUILD_QUICK=TRUE \
-DCHECK_UPDATES=FALSE
#make -j${PARALLEL} install && make clean
make install && make clean
cd ../ && rm -rf build_gpu_serial
# GPU parallel
echo "[GPU parallel edition]"
mkdir build_gpu_parallel && cd build_gpu_parallel
cmake .. \
-DCMAKE_INSTALL_PREFIX=${INSTALL_DIR} \
-DCOMPILER=GNU \
-DMPI=TRUE \
-DCUDA=TRUE \
-DINSTALL_TESTS=FALSE \
-DDOWNLOAD_MINICONDA=FALSE \
-DUSE_CONDA_LIBS=TRUE \
-DPYTHON_EXECUTABLE=${INSTALL_DIR}/miniconda/bin/python \
-DCUDA_TOOLKIT_ROOT_DIR=${CUDA_HOME} \
-DBUILD_QUICK=TRUE \
-DCHECK_UPDATES=FALSE
#make -j${PARALLEL} install && make clean
make install && make clean
cd ../ && rm -rf build_gpu_parallel
# CPU openmp
echo "[CPU openmp edition]"
mkdir build_cpu_openmp && cd build_cpu_openmp
cmake .. \
-DCMAKE_INSTALL_PREFIX=${INSTALL_DIR} \
-DCOMPILER=GNU \
-DMPI=FALSE \
-DOPENMP=TRUE \
-DCUDA=FALSE \
-DINSTALL_TESTS=FALSE \
-DDOWNLOAD_MINICONDA=FALSE \
-DUSE_CONDA_LIBS=TRUE \
-DPYTHON_EXECUTABLE=${INSTALL_DIR}/miniconda/bin/python \
-DBUILD_REAXFF_PUREMD=TRUE \
-DBUILD_QUICK=TRUE \
-DCHECK_UPDATES=FALSE
#make -j${PARALLEL} install && make clean
make install && make clean
cd ../ && rm -rf build_cpu_openmp
# CPU mpi (don't build mpi+openmp version)
echo "[CPU parallel edition]"
mkdir build_cpu_parallel && cd build_cpu_parallel
cmake .. \
-DCMAKE_INSTALL_PREFIX=${INSTALL_DIR} \
-DCOMPILER=GNU \
-DMPI=TRUE \
-DOPENMP=FALSE \
-DCUDA=FALSE \
-DINSTALL_TESTS=FALSE \
-DDOWNLOAD_MINICONDA=FALSE \
-DUSE_CONDA_LIBS=TRUE \
-DPYTHON_EXECUTABLE=${INSTALL_DIR}/miniconda/bin/python \
-DBUILD_QUICK=TRUE \
-DCHECK_UPDATES=FALSE
#make -j${PARALLEL} install && make clean
make install && make clean
cd ../ && rm -rf build_cpu_parallel
# ad hoc fix for python interpreter path
# FixCondaShebang does not work for some files on this system...
# (not due to symbolic links)
ORIGPATH=${WORKDIR}/amber24_src/build_cpu_serial/CMakeFiles/miniconda/install
ORIGPATH2=/lustre${ORIGPATH} # this might be involved...
NEWPATH=${INSTALL_DIR}/miniconda
cd ${INSTALL_DIR}
for f in bin/* miniconda/bin/*; do
grep -I gwork $f
if [ $? == 0 ]; then
sed -i -e "s|${ORIGPATH2}|${NEWPATH}|g" \
-e "s|${ORIGPATH}|${NEWPATH}|g" $f
fi
done
# append env variables setting
cd ${INSTALL_DIR}
cat <<EOF >> amber.sh# rccs setting
export LD_LIBRARY_PATH=${INSTALL_DIR}/lib:${INSTALL_DIR}/lib64:${INSTALL_DIR}/miniconda/lib:\$LD_LIBRARY_PATHCUDA_AMBER=/apl/cuda/12.4u1
export PATH=\$CUDA_AMBER/bin:\$PATH
export LD_LIBRARY_PATH=\$CUDA_AMBER/lib64:\$LD_LIBRARY_PATHOMPI_AMBER=/apl/openmpi/4.1.8/gcc13-cuda12.4u1
export PATH=\$OMPI_AMBER/bin:\$PATH
export LD_LIBRARY_PATH=\$OMPI_AMBER/lib:\$LD_LIBRARY_PATH
export OMPI_MCA_btl=^openibexport LD_LIBRARY_PATH=/apl/oneapi/mkl/2025.0.0.1/lib:\$LD_LIBRARY_PATH
export LD_LIBRARY_PATH=/apl/oneapi/compiler-rt/2025.0.4/lib:\$LD_LIBRARY_PATH
EOF
cat <<EOF >> amber.csh# rccs setting
setenv LD_LIBRARY_PATH "${INSTALL_DIR}/lib:${INSTALL_DIR}/lib64:${INSTALL_DIR}/miniconda/lib:\$LD_LIBRARY_PATH"set CUDA_AMBER=/apl/cuda/12.4u1
setenv PATH "\$CUDA_AMBER/bin:\$PATH"
setenv LD_LIBRARY_PATH "\$CUDA_AMBER/lib64:\$LD_LIBRARY_PATH"set OMPI_AMBER=/apl/openmpi/4.1.8/gcc13-cuda12.4u1
setenv PATH "\$OMPI_AMBER/bin:\$PATH"
setenv LD_LIBRARY_PATH "\$OMPI_AMBER/lib:\$LD_LIBRARY_PATH"
setenv OMPI_MCA_btl ^openibsetenv LD_LIBRARY_PATH "/apl/oneapi/mkl/2025.0.0.1/lib:\$LD_LIBRARY_PATH"
setenv LD_LIBRARY_PATH "/apl/oneapi/compiler-rt/2025.0.4/lib:\$LD_LIBRARY_PATH"
EOF
# run tests
cd ${INSTALL_DIR}
. ${INSTALL_DIR}/amber.sh
# now, $AMBERHOME should be $INSTALL_DIR# parallel tests first
export DO_PARALLEL="mpirun -np 2"make test.parallel && make clean.test
export DO_PARALLEL="mpirun -np 4"
cd test; make test.parallel.4proc; make clean; cd ../unset DO_PARALLEL
# openmp tests
make test.openmp && make clean.test
# serial tests
make test.serial && make clean.test
テスト
以下のテストを ccgpu (A30*2 搭載)にて実行
#!/bin/sh
INSTALL_DIR="/apl/amber/24u3"
#----------------------------------------------------------------------
module -s purge
module -s load gcc-toolset/13
module -s load openmpi/4.1.8/gcc13-cuda12.4u1
module -s load cuda/12.4u1
module -s load mkl/2025.0.0.1
module -s load gaussian/16c02export LANG=C
export LC_ALL=C
ulimit -s unlimited# run tests
cd ${INSTALL_DIR}
. ${INSTALL_DIR}/amber.sh
make clean.test## gpu tests
export DO_PARALLEL="mpirun -np 2"
make test.cuda.parallel && make clean.test # DPFP
cd test; ./test_amber_cuda_parallel.sh SPFP; make clean; cd ../
#
unset DO_PARALLEL
make test.cuda.serial && make clean.test # DPFP
cd test; ./test_amber_cuda_serial.sh SPFP; make clean && cd ../
テストのログは /apl/amber/24u3/logs 以下にあります。結果については 24u1 の時と同様です。
メモ
- miniforge がデフォルトとなったため、前回まで使っていた miniforge 化パッチは不要に
- update_amber をシステムデフォルトの python 3.6 で実行した場合、UnicodeDecodeError が発生するため、ここだけ python 3.9 を使用。
- 並列ビルド(make -j)をした場合、amber-modules/pmemd/gbl_constants_mod.mod のあたりでビルドエラーが発生。シリアル実行にすることで解消
- miniforge 内のライブラリを参照する方法が変わった?上記手順では amber.*sh の末尾で LD_LIBRARY_PATH に miniconda/lib を加えることで回避。これをやらない場合一部の実行ファイルが正常に動かず。
- miniconda を download しない場合は PYTHON_EXECUTABLE での指定が必要?他のやり方ではうまく参照できず。