
1

1
© NEC Corporation 2004

Performance Optimization and Tuning
for NEC TX7

including
MOLPRO, MOLCAS, AMBER, GAMESS-US

Jan Fredin, Ph.D.
NEC Solutions America

March 5, 2004

2

2
© NEC Corporation 2004

Talk Overview

NEC TX7 hardware
General TX7 performance tuning techniques
Case Studies: examples of tuning efforts on
Chemistry applications:

MOLPRO
MOLCAS
AMBER
GAMESS-US
User Molecular Dynamics Code

3

3
© NEC Corporation 2004

NEC TX7 Servers

Second generation technical computing
server with Intel’s latest 64-bit CPU
“Itanium® 2 processor”.

Configured with up to 32 CPUs per
node. NEC was the first company to
release Itanium® 2 systems with 32
processors.

Designed and built with supercomputer
technology from NEC.

Ideal systems for scientific and
engineering applications.

4

4
© NEC Corporation 2004

TX7 Internal Structure

Memory ControllerMemory ControllerMemory Controller

Memory ControllerMemory ControllerMemory Controller

DDR
DIMMs

CellCell

Up to 8 Cells

PCIPCI--XX
Up to 112slots

Cross-bar interconnectCrossCross--bar interconnectbar interconnect

PCI-X bridge PCI-X bridge
14 PCI-X slots

PCI-X bridge PCI-X bridge
14 PCI-X slots

PCI-X bridge PCI-X bridge
14 PCI-X slots

PCI-X bridge PCI-X bridge
14 PCI-X slots

PCI-X bridge PCI-X bridge
14 PCI-X slots

PCI-X bridge PCI-X bridge
14 PCI-X slots

PCI-X bridge PCI-X bridge
14 PCI-X slots

PCI-X bridgePCIPCI--X bridgeX bridge PCI-X bridgePCIPCI--X bridgeX bridge
14 PCI-X slots

Cell
Controller

CellCell
ControllerController

Itanium2Itanium2

Itanium2Itanium2
Itanium2Itanium2

Itanium2Itanium2

Total band width
>100GB/s

• ccNUMA architecture
• Near-flat 32-way memory access
• Flexible partitioning Cell Photo

Itanium2
NEC Chipset DIMMs memory

TX7 / i6010, i6510, i9510

5

5
© NEC Corporation 2004

Itanium 2 Processor Memory Hierarchy

1.5 GHz Itanium® 2 Processor

L2
256KB
8-way
128B lines
5-7 CLKS
Banked

48 GB/s

L3
6MB
24-way
128B lines
7-14 CLKS

External
Memory

6.4 GB/s

48 GB/s

48 GB/s

L1D
16KB
64B lines
1 CLK

L1I
16KB
64B lines
1 CLK

128 FP Registers

128 General Registers

Core Pipeline
(functional units)

6

6
© NEC Corporation 2004

NEC IPF Server Roadmap
Pe

rf
or

m
an

ce
 /

Sc
al

ab
ili

ty

16 way

Itanium® 2 / MadisonItaniumItanium®® 2 / Madison2 / Madison
4 way

Express5800/
1160Xb
(AzusA)

2001 2002 2003

Itanium®ItaniumItanium®®

TX7 Series

32 way

7

7
© NEC Corporation 2004

● Subsidiaries
▲ Partner
■ Branch

.

NEC Australia
Pty. Ltd.

Singapore
NEC
Singapore
Pty. Ltd.

●

Australia
●

JAPAN
HMD

U.S.A.

Brasil
●

■

NEC do
Brasil

S.A.

Germany

Groupe Bull

NEC France

● ●
●
▲

France

●

Korea
NEC
Support Office

Canada

▲

Cray

NECSAM

NEC HPCE

NEC Worldwide HPC Support and
Development Organizations

8

8
© NEC Corporation 2004

Software Support Cycle
Port - successfully run code for all QA available

typical compile efc -O2 -ftz
reduce optimization for problem areas

Tune - improve performance
identify time consuming routines for typical
workload
measure performance using UNIX gprof, NEC
compiler add-of ftrace, Intel VTUNE or timing calls
test impact of changes in compile options, compile
directives and source code restructure
can be limited by ISV code maintenance rules

9

9
© NEC Corporation 2004

Software Support Cycle

Update, supporting software vendor and user sites
test and verify full QA correctness
provide changes through vendor distribution or
release notes
update for:
- new vendor software release
- compiler update
- user problems, feedback and benchmarks
- hardware upgrades

Repeat the tune and update steps regularly

10

10
© NEC Corporation 2004

Tuning Challenge
keep fast functional units busy, providing all data required

2 FMA / clock - 6GFLOPS / sec for Itanium2 1.5GHz
maximize loop optimization

provide compiler with loops that can achieve high
performance
software pipelining - similar to vectorization
instructional parallelism - 6 (2 bundles) / clock
prefetching - avoid waiting at the L3 cache bottleneck

high performance is achieved by balance in the loops
computational complexity
data locality
number of variables

11

11
© NEC Corporation 2004

Software Tuning Techniques
know the good application input and algorithm
choices

memory, processors, site defaults
use tuned kernels like NEC MathKeisan
choose effective compile options
restructure loops
help compiler optimize through source-code
directives

12

12
© NEC Corporation 2004

Solution of large scale eigenvalue problemsARPACK

Direct solver for sparse symmetric systemsSOLVER

Parallel Matrix/Graph ordering and partition library. Uses MPI.ParMETIS

Matrix/Graph ordering and partitioning libraryMETIS

Fast Fourier TransformsFFT

Sparse BLAS (from ACM Algorithm 692)SBLAS

C interface to BLASCBLAS

Basic Linear Algebra Communication Subprograms. Uses MPI.BLACS

Scalable Linear Algebra PACKage (contains PBLAS)ScaLAPACK

Linear Algebra PACKage for high performance computers.LAPACK

Basic Linear Algebra SubprogramsBLAS

DescriptionName

MathKeisan is a set of NEC highly tuned math libraries.

NEC MathKeisan

13

13
© NEC Corporation 2004

DGEMM Performance

0

1000

2000

3000

4000

5000

6000

10 50 100 500 1000 1500
Matrix size

M
FL

O
P/

s

Fortran -O3

MathKeisan 1.3

MathKeisan 1.5
(target release
2Q CY2004)

MathKeisan 1.5 Improvements

1.5 GHz Madison, 6 MB L3

14

14
© NEC Corporation 2004

Compile Choices

NEC compiler is a superset of the Intel compiler
NEC compiler provides ftrace function for code
section performance tracing

Compiler optimization level
-O3 highest level of optimization
-software pipelining on
-activates prefetching
-activates other loop optimizations

-O2 safe optimization level
- software pipelining on

-O0 no optimization for debugging

15

15
© NEC Corporation 2004

Other Compile Options

-ftz flush-to-zero denormalized values
should always use
default at compiler level -O3

-opt_report compiler optimization report
messages about pipelining, dependencies,
unrolling, other loop restructuring

-ip interprocedural optimization within object files
-prof_gen and -prof_use profile generated
optimization
-restrict / -ansi_alias enable strict pointer aliasing
-i8/-r8 integer and real default word size

16

16
© NEC Corporation 2004

Loop Restructuring

code developers know overall structure
provide compiler with loops that can achieve maximum
performance
multi-purpose scientific and engineering codes often
have heavy usage of long complex loops with
conditionals and indirect indexing
goal of hand recoding is to isolate sections that are
hard for the compiler to optimization

too complex to analyze
external calls
data dependencies
conditionals

17

17
© NEC Corporation 2004

Restructuring Example - Loop Blocking
breaks up multi-level loop into blocks that fit into
cache
best blocking sizes determined experimentally
blocked sections are prime targets for parallelism

Modified Code
parameter (kblock = 1024)
do ks = 1, m, kblock
do j = 1, n
do i = 1, p
do k = ks, min(ks+kblock-1,m)
c(k,j)=c(k,j)-a(k,i)*b(i,j)

enddo
enddo

enddo
enddo

Original Code

do j = 1, n
do i = 1, p
do k = 1, m
c(k,j)=c(k,j)-a(k,i)*b(i,j)

enddo
enddo

enddo

18

18
© NEC Corporation 2004

Compile Automated Loop Restructuring

Loop Unrolling
Unroll and Jam
Reduction Optimization
Loop Interchange
Loop Fusion
Loop Fission

19

19
© NEC Corporation 2004

Loop Unrolling
perform n iterations of the inner loop on each pass
actives at compile level -O3, compiler sets unroll depth n

!DIR$ unroll (n) or !DIR$ nounroll
directive controls unroll depth n or switchs off

Modified Code
subroutine vadd(n, a, b)
integer n, i
double precision a(*), b(*)

c explicitely unrolled by 4
do i = 1,n,4

a(i) = a(i) + b(i)
a(i+1) = a(i+1) + b(i+1)
a(i+2) = a(i+2) + b(i+2)
a(i+3) = a(i+3) + b(i+3)

enddo
do i=i,n

a(i) = a(i) + b(i)
enddo
end

Original Code
subroutine vadd(n, a, b)
integer n, i
double precision a(*),b(*)

!DIR$ UNROLL(4)
do i = 1,n

a(i) = a(i) + b(i)
enddo
end

Output from -O3 -opt_report
Block, Unroll, Jam Report:
(loop line numbers, unroll factors and type
of transformation)
Loop at line 6 unrolled with remainder by 4

20

20
© NEC Corporation 2004

Modified CodeOriginal Code
do j = 1, n
do k = 1, p
do i = 1, m
c(i,j)=c(i,j)+a(i,k)*b(k,j)

enddo
enddo

enddo
Output from -opt_report at -O3:
Block, Unroll, Jam Report:
(loop line numbers, unroll factors
and type of transformation)
Loop at line 1 unrolled and jammed by 4
Loop at line 2 unrolled and jammed by 4

do j = 1, n-3, 4
do k = 1, p
do i = 1, m
c(i,j+0)=c(i,j+0)+a(i,k)*b(k,j+0)
c(i,j+1)=c(i,j+1)+a(i,k)*b(k,j+1)
c(i,j+2)=c(i,j+2)+a(i,k)*b(k,j+2)
c(i,j+3)=c(i,j+3)+a(i,k)*b(k,j+3)

enddo
enddo

enddo
do j = j, n
do k = 1, p
do i = 1, m
c(i,j)=c(i,j)+a(i,k)*b(k,j)

enddo
enddo

enddo

“jam” n iterations outer loop into each pass of inner loop
actives at compile level -O3, no user control

Unroll and Jam

21

21
© NEC Corporation 2004

Reduction Optimization
split sum into n partial sums then collect partial sums
actives at compiler level -O3, no user control

Modified Code
s1 = 0.0d0
s2 = 0.0d0
s3 = 0.0d0
s4 = 0.0d0
do i = 1, n-3, 4

s1 = s1 + a(i)
s2 = s2 + a(i+1)
s3 = s3 + a(i+2)
s4 = s4 + a(i+3)

enddo
do i = i, n

s1 = s1 + a(i)
enddo
s = s1 + s2 + s3 + s4

Original Code
s = 0.0d0
do i = 1, n
s = s + a(i)

enddo

Output from -opt_report at -O3
Block, Unroll, Jam Report:
(loop line numbers, unroll factors and type of
transformation)
Loop at line 2 unrolled with remainder by 8
(reduction)

22

22
© NEC Corporation 2004

Loop Interchange
change in nesting order of 2 or more loops
unit stride on loads to reuse data in cache
activates at compile level -O3, no user control

Modified Code
do k = 1, p
do j = 1, n
do i = 1, m
c(i,j)=c(i,j)-a(i,k)*b(k,j)

enddo
enddo

enddo

Original Code
do i = 1, m
do j = 1, n
do k = 1, p
c(i,j)=c(i,j)-a(i,k)*b(k,j)

enddo
enddo

enddo

Output from -opt_report using -O3
LOOP INTERCHANGE in test_ at line 1
LOOP INTERCHANGE in test_ at line 2
LOOP INTERCHANGE in test_ at line 3

23

23
© NEC Corporation 2004

Loop Fusion
combine 2 or more loops with same iteration count into 1
reduces overhead, can promote data sharing and
computational complexity
can block pipelining if too many registers get used
activates at compile level -O3, no user control

subroutine vmul(n,alpha,x,y)
integer n, i
double precision x(*), y(*)
do i = 1, n

x(i) = x(i) * alpha
enddo
do i = 1, n

y(i) = y(i) * alpha
enddo
end
Output from -opt_report at -O3
Fused Loops: (5 8)

subroutine vmul(n,alpha,x,y)
integer n, i
double precision x(*), y(*)
do i = 1, n

x(i) = x(i) * alpha
y(i) = y(i) * alpha

enddo
end

Original Code Modified Code

24

24
© NEC Corporation 2004

Loop Fission
also called loop distribution or loop splitting
smaller loops for optimization like prefetching and pipelining
activates at compile level -O3

!DIR DISTRIBUTE POINT focuses compiler on trying fusion
-outside loop, compiler sets location
-inside loop, programmer sets location

Modified Code
do i = lft, llt

fail(i)=1.0
hgener(i)=0.0
diagm(i)=1.e+31
sieu(i)=ies(nnm1+i)

enddo
do i = lft, llt
x1(i)=x(1,ix1(i))
y1(i)=x(2,ix1(i))
z1(i)=x(3,ix1(i))

enddo

Original Code
do i = lft, llt

fail(i)=1.0
hgener(i)=0.0
diagm(i)=1.e+31
sieu(i)=ies(nnm1+i)

!dir$ distribute point
x1(i)=x(1,ix1(i))
y1(i)=x(2,ix1(i))
z1(i)=x(3,ix1(i))

enddo
Output of -opt_report for -O3
LOOP DISTRIBUTION in test_ at line 1
Distributed for large ii at __ performed in
test_ at line 7

25

25
© NEC Corporation 2004

Compile Directive - Variable Dependencies
compiler cannot determine array references overlap
so pipelining is blocked
!dir$ IVDEP - fortran loop level
#pragma IVDEP - C loop level
C restrict pointer - routine call level

subroutine test(nu1,nu2, tx, sxx, dd1, dd2, np)
integer nu1, nu2, i3, k, np(*)
double precision tx(3,*), sxx(9,*), dd1, dd2

!dir$ ivdep
do k = nu1, nu2

i3 = np(k)
tx(1,i3) = tx(1,i3) + sxx(1,k)*dd1 + sxx(2,k)*dd2
tx(2,i3) = tx(2,i3) + sxx(4,k)*dd1 + sxx(5,k)*dd2
tx(3,i3) = tx(3,i3) + sxx(7,k)*dd1 + sxx(8,k)*dd2

enddo
end

26

26
© NEC Corporation 2004

Other Compile Directives
prefetch

data values are loaded into cache ahead of access to
reduce latency in loading data
too much prefetching can cause cache misses
!dir$ prefetch a
!dir$ noprefetch b

software pipelining
default in compile level -O2 and -O3
directive to switch on/off software pipelining
!dir$ swp
!dir$ noswp

loopcount
hint for compiler to optimize loop
!dir$ maxloopcount_value

27

27
© NEC Corporation 2004

Case Studies

Examples of tuning efforts on Chemistry
applications:

MOLPRO
MOLCAS
AMBER
GAMESS
User Molecular Dynamics (MD) Code

28

28
© NEC Corporation 2004

MOLPRO 2002.6
MOLPRO is designed and maintained by H.-J. Werner
(University of Stuttgart) and P. J. Knowles (University of
Birmingham)

http://www.molpro.net/

MOLPRO is a complete system of ab initio programs for
molecular electronic structure calculations with an emphasis on
highly accurate computations and extensive treatment of the
electron correlation.

Mixed Fortran and C using PNNL Global Arrays (GA) for
shared memory and parallel MPI tasks. Driver program checks
license and exec’s computational executable. 64 bit real,
integer, pointer

normal_dft dataset
adrenaline SVWN, BLYP from MOLPRO bench directory

29

29
© NEC Corporation 2004

MOLPRO 2002.6
upgrade source from MolPro2002.5 to MolPro2002.6
compiler initial optimization -O2 and < 20 routines –O0
upgrade MathKeisan for blas and lapack
profile top routines using MolPro development environment to
run computational unit stand-alone: normal_dft

21.8% uncompress_double
9.0% dfti_block
7.8% dft_rho
5.2% dform
5.0% dgenrl

aioint, compress=0 turns off compression
at end of molpro2002.6/bin/molproi.rc add:
nocompress

dft/dfti.f -O3 gives correct numerical results for all QA
another customer test profile showed top routines addmx,
mxmas, fzero tuned with -O3 (3 files) gave 22% improvement

30

30
© NEC Corporation 2004

MOLPRO 2002.6

0

200

400

600

800

1000

1200

initial final uncompress

re
al

 s
ec

on
ds

1cpu
2cpu
4cpu

normal_dft

31

31
© NEC Corporation 2004

MOLCAS 5.4
MOLCAS is developed and distributed from the Department of
Theoretical Chemistry at Lund University

http://www.teokem.lu.se/molcas/

MOLCAS is a quantum chemistry software package with a focus
on methods that will allow an accurate ab initio treatment of very
general electronic structure problems for molecular systems in
both ground and excited states.
MOLCAS is a research product developed by scientists to be
used by scientists.

Fortran with some C systems control routines, MPI parallel and
shared memory through PNNL GA. 64 bit real, integer, pointer.
Independent modules are called in sequence from MOLCAS-
generated scripts.

test902 performance test provided in the MOLCAS distribution.
Disk-based Hartree-Fock using modules seward and scf

32

32
© NEC Corporation 2004

MOLCAS 5.4
initial compile optimization -O2 with 4 routines at
-O0, static link
serial focus due to limited parallel implementation
in MOLCAS 5.4

parallel support targeted for next release.
4 main modules:

46% seward
26% caspt2
16% scf
12% rasscf

add MathKeisan blas – 38% improvement
profile showed pack / nopack are in top routines
added nopack keyword for Seward module input

33

33
© NEC Corporation 2004

MOLCAS 5.4

0
100
200
300
400
500
600
700
800
900

initial final nopack

re
al

 s
ec

on
ds rasscf

caspt2
scf
seward

test902

modules

34

34
© NEC Corporation 2004

AMBER 7.0
Distributed by University of California, San Francisco

http://amber.scripps.edu/

About 60 programs that work reasonably well together solving
molecular modeling and dynamics problems.

sander
- Simulated annealing with NMR-derived energy restraints.
- main program used for molecular dynamics simulations.

Mostly Fortran with C for dynamic memory and file handling and MPI
parallel. Each module is a separate executable. Sander is built from
98 source files consisting of 408 subroutines.

sander gb_mb dataset provided in AMBER benchmarks directory
Generalized Born myoglobin simulation, 2492 atoms in 100,000
waters
20 Ang. cutoff, salt 0.2Molar, long-range forces every 4 cycles

35

35
© NEC Corporation 2004

AMBER 7.0
initial distribution compile optimization

compile level2=-O2
compile level3=-O2 used for 36 out of 96 files

profile shows 98% of time spent in egb
subroutine egb is composed of 3 large loops

upgrade MathKeisan blas and lapack
compile tuning

level3=-O3, QA shows egb has numerical errors
level3=-O3 used for all other level3 files, used -O2 for egb

code restructuring
tried splitting egb_loop1 and egb_loop2 - same performance
tested impact of !dir$ IVDEP in many locations; no improvement

36

36
© NEC Corporation 2004

AMBER 7.0

Sander gb_mb

0
10
20
30
40
50
60
70

initial final

re
al

 s
ec

on
ds

other

egb_loop3

egb_loop2

egb_loop1

Routines

37

37
© NEC Corporation 2004

GAMESS-US
GAMESS is maintained by the members of the Gordon
research group at Iowa State University

http://www.msg.ameslab.gov/GAMESS/GAMESS.ht
ml

The General Atomic and Molecular Electronic Structure
System (GAMESS) is a program for ab initio quantum
chemistry.

Fortran single executable using MPI over sockets for
parallel. 64bit real, integer, pointer

gms_hf dataset
nicotine Hartree Fock SCF single point calculation
one of GAMESS benchmarks distributed in early 1990’s

38

38
© NEC Corporation 2004

GAMESS-US
profile gms_hf:

42.0% hstar
9.5% dspdfs
3.7% forms

initial compiler optimization -O2
-O3 top 5 routines: slower
-O1 hstar: slower
hstar: ivdep on nonpipelining loops: slower
turn off packing: slower
use vector code for dspdfc & forms: slower
update source, compiler, MathKeisan
saw some tests with 12% time in __libc_read:
comes from compile libraries on cross-mounted
disk: use static link and no shared object (lib*.so)

39

39
© NEC Corporation 2004

GAMESS-US

0

50

100

150

200

250

300

350

initial final

re
al

 s
ec

on
ds

1cpu
2cpu
4cpu

gms_hf

40

40
© NEC Corporation 2004

User MD Tuning - compile options
customer provided molecular dynamics application, written in
about 12,000 lines of C with customer test input
original compile flags

ineffective with -mp (maintain precision) severly limits
performance
ecc -O3 -tpp2 -Zp16 -static -mp -IPF_fma -IPF_fltacc

tuned compile flags
ecc -O3 -tpp2 -Zp16 -static -restrict -ftz -ip
-restrict (or -ansi_alias) tells compiler that pointers labeled
restrict in routine call have independent locations

- restrict pointers provides information about potential
dependencies that can enable pipelining

- restrict pointers declared on most of MD’s malloc’ed locations
-ip turns on inter-procedural optimizing within the file that
is being compiled

41

41
© NEC Corporation 2004

User MD Tuning - code modifications
use tuned library call

replace original code with MathKeisan
function vdSinCos
computes (sin(a[i],cos(a[i]) for i=0…n
pipelines multiple sin and cos calculations

programmer level loop recoding
split main loop of important routine into 3

- non-bonded pair list generation
- calculation of force potentials across all pairs
- application of forces across all pairs

enables pipelining

42

42
© NEC Corporation 2004

User MD

0

5

10

15

20

25

re
al

 s
ec

on
ds

original
compile flags
restrict pointers
vdSinCos()
split loop

