
RCCS Reference Manual

■ [Last update] 2024-Mar-21

Table of Contents

Connection
Login to RCCS
Register SSH Public Key and Password for Web
Login Shell

Whole System of RCCS
RCCS Resources

CPU Points and Queue Factor
Checking Resources
Individual Limitation of Resources

Queueing System
Overview of Queueing System
Queue Classes
Show Job Status
Submit Your Jobs
Delete Jobs
Hold/Release Jobs
Get Information of Finished Jobs

Build and Run
Command to Build
Running Parallel Program
Environment Modules

Package Programs
Other RCCS Special Commands

Queueing System Related
Job wait time estimator (waitest)
Show Resources Used
Utility Commands for Batch Jobs
Manipulation of Files on Computation Nodes

Inquiry

Connection

Login to RCCS

Frontend nodes (ccfep.ims.ac.jp) can be accessed using ssh with public key authentication.
All computers will stop during 9:00-19:00 on the first Monday of each month because of maintenance. The maintenance
time might be extended.
Access to frontend nodes is allowed only from IPv4 address assigned to Japan or other registered IP addresses. See
Application for SSH connection from outside Japan for details.

Register SSH Public Key and Password for Web

Please prepare a public/private key pair of ssh. If you do not know the procedure, please search in internet by yourself.

First registration / Missing your username or password for web

1. Open https://ccportal.ims.ac.jp/en/user/password to request mail for registration in web browser.
2. Fill your email which is written in your application, then press button "E-mail new password".
3. After you recieve an email from RCCS, open URL in the mail to login in web browser.
4. Fill your new password in "Password" and "Confirm password".
5. Paste your public key in "Public key".
6. Press "Save" button.

Using your username and password for web

1. Open https://ccportal.ims.ac.jp/en/frontpage in web browser, then fill your username and password and press "Log in"
button.

2. Press "My account" which is located in top right corner.
3. Press "Edit" tab.
4. To change password, fill current password and new passwords.

https://ccportal.center.ims.ac.jp/en/node/1893
https://ccportal.center.ims.ac.jp/#connection
https://ccportal.center.ims.ac.jp/#connection_login
https://ccportal.center.ims.ac.jp/#connection_sshkey
https://ccportal.center.ims.ac.jp/#connection_loginshell
https://ccportal.center.ims.ac.jp/#overview
https://ccportal.center.ims.ac.jp/#resources
https://ccportal.center.ims.ac.jp/#resources_cpupoints
https://ccportal.center.ims.ac.jp/#resources_check
https://ccportal.center.ims.ac.jp/#resources_individual
https://ccportal.center.ims.ac.jp/#queueingsystem
https://ccportal.center.ims.ac.jp/#queueingsystem_overview
https://ccportal.center.ims.ac.jp/#queueingsystem_queues
https://ccportal.center.ims.ac.jp/#queueingsystem_status
https://ccportal.center.ims.ac.jp/#queueingsystem_submission
https://ccportal.center.ims.ac.jp/#queueingsystem_cancel
https://ccportal.center.ims.ac.jp/#queueingsystem_holdrelease
https://ccportal.center.ims.ac.jp/#queueingsystem_finishedjobs
https://ccportal.center.ims.ac.jp/#buildrun
https://ccportal.center.ims.ac.jp/#buildrun_command
https://ccportal.center.ims.ac.jp/#buildrun_parallel
https://ccportal.center.ims.ac.jp/#buildrun_modules
https://ccportal.center.ims.ac.jp/#packages
https://ccportal.center.ims.ac.jp/#special
https://ccportal.center.ims.ac.jp/#special_jobs
https://ccportal.center.ims.ac.jp/#special_waitest
https://ccportal.center.ims.ac.jp/#special_resources
https://ccportal.center.ims.ac.jp/#special_utilities
https://ccportal.center.ims.ac.jp/#special_remsh
https://ccportal.center.ims.ac.jp/#inquiry
https://ccportal.center.ims.ac.jp/en/ssh_outside_japan
https://ccportal.center.ims.ac.jp/en/user/password
https://ccportal.center.ims.ac.jp/en/frontpage

5. Paste your public key.
6. Press "Save" button.

Login Shell

/bin/bash, /bin/tcsh and /bin/zsh are available.
You can select login shell in the sampe page as ssh public key. It will take some time to change login shell.
You can custumize your .login or .cshrc in your home directory, but be carefully.

Whole System of RCCS

Whole system of RCCS is shown in the figure below.
Interactive nodes are ccfep (4 nodes). You can build or debug applications on them.
There are four kinds of disks, namely /home, /save, /gwork, /lwork(computation node only) and /ramd(computation node
only). Access speed and data lifetime are different.
Width of lines between disks and computers represents transfer speed. Wider is faster.
Disk /gwork, /lwork and /ramd is temporary space for your calculation. All files will be DELETED after the completion of
your job.
Disk /lwork is NVMe SSD. The capacity is about 1.5 TB. You can use 11.9 GB / core.
Disk /ramd is RAM disk of each node. The size is about 240 GB or 1,008 GB, depending on node type. The sum of memory
used in the job and RAM disk is controlled by the queuing system.
There are no differences between /home and /save other than the names. (Formerly, there had been a difference
regarding backuping policy.)
Use of /tmp, /var/tmp or /dev/shm is not allowed. Jobs using those dirctories will be killed by the administrator.
InfiniBand is used for interconnect.

RCCS Resources

CPU Points and Queue Factor

CPU points are spent when you use CPU or GPU.
Queue factors are determined as follows on each systems.

System CPU Queue Factor GPU Queue Factor
ccap
(jobtype=largemem)

60 points / (1 vnode * 1
hour) -

ccap
(jobtype=vnode)

45 points / (1 vnode * 1
hour) -

ccap
(jobtype=core) 1 point / (1 core * 1 hour) -

ccap
(jobtype=gpu) 1 point / (1 core * 1 hour) 60 points / (1 GPU * 1

hour)

On ccfep, CPU points will be consumed according to CPU time spent.
On computation nodes, CPU points will be calculated from the elaps of processes.
We don't charge money for the supercomputer usage.

If you want to know your current CPU points, run "showlim -c".

Checking Resources

CPU points used by batch jobs and total disk usage (corresponding to "showlim -c" and "showlim -d", respectively) are
updated every 10 minutes.
CPU points used in interactive nodes are updated on 2:20.
If CPU points run out, all running jobs of your group will be killed and further job submissions won't be allowed.
If your disk usage exceed the limit, new job submissions will be rejected.

Individulal Limitation of Resources

Access to "Limiting Resources Page" with your web browser.

Only representative user can limit maximum resources of each members.
Normal user can only view the values of maximum resources.
Maximum available number of cpus, point and amount of disks can be limitted.

Queueing System

Overview of Queueing System

Queue Classes

■ Queue class for all users

System Class
(Jobtype) Node Memory Limitation

for a job

of cores per group
of total vnodes
(# of total cores)Assigned points # of

cores/gpus # of jobs

ccap H
(largemem) TypeF 7.875GB/core 1-14 vnodes

(64-896 cores)

7,200,000 -
2,400,000 -
720,000 -
240,000 -
- 240,000

9,600/64
6,400/42
4,096/28
3,200/12
768/8

1,000

28 vnodes
(1,792 cores)

ccap H
(vnode) TypeC 1.875GB/core

1-50 vnodes
(64-3,200
cores)

1,248+ vnode
(79,872+ cores)

ccap H
(core) TypeC 1.875GB/core 1-63 cores 200+ vnodes

(12,800+ cores)

ccap PN
(gpu) TypeG 1.875GB/core 1-48 gpus

1-16 cores/gpu

32 vnodes
(2,048 cores
128 GPUs)

There are additional limitations for core (ncpus<64 or gpu jobs) and jobtype=largemem jobs. The limit values can be
shown by "jobinfo -s" command.
Jobs must be finished before the scheduled maintenance.
Only around half of available nodes may accept long jobs (more than a week).
You can omit jobtype in your jobscript except for jobtype=largemem; other types can be judged from the requested
resources.
80 nodes of TypeC (160 vnodes) will be shared by "vnode" and "core" jobs.

https://ccportal.center.ims.ac.jp/en/resource_limit/point

Short "vnode" jobs can be assigned to a "largemem" node.
Short "core" jobs can be assigned to a "gpu" node.

■ Special queue class

The settings of queue class are following.

System Class Node Wall Time Memory # of cores per job # of cores per group
ccap (occupy) TypeC 7 days 4.4GB/core ask us allowed number of cores

Show Job Status

ccfep% jobinfo [-h HOST] [-q QUEUE] [-c|-s|-m|-w] [-n] [-g GROUP|-a] [-n]

choose additional information type

One of those options can be added.

-c show the latest result (number of GPUs and jobtype etc. are not available)
-s show status summary of the queue(s)
-m show memory information
-w show working directory of jobs
-n show node status

jobs of other users

-g group member's jobs are also shown
If you belong to multiple groups, try -g [GROUP name] to specify a group.

-a show all users' jobs
most of information (username etc.) will be hidden.

queue specification

You don't need to specify this usually, since all the user available queues (H and HR[0-9]) are the default targets.

-h HOST: specify host type (only ccap is available)
-q QUEUE: specify queue name (such as H or HR1)

Example: show queue summary

In User/Group stat, number of jobs, cpu cores, and gpus can be shown by "jobinfo -s". Limitation about those resources are also
shown. In Queue Status, number of waiting jobs and available nodes/cores/gpus will be shown.

ccfep% jobinfo -s

User/Group Stat:
--
 queue: H | user(***) | group(***)
--
 NJob (Run/Queue/Hold/RunLim) | 1/ 0/ 0/- | 1/ 0/ 0/6400
 CPUs (Run/Queue/Hold/RunLim) | 4/ 0/ 0/- | 4/ 0/ 0/6400
 GPUs (Run/Queue/Hold/RunLim) | 0/ 0/ 0/- | 0/ 0/ 0/ 48
 core (Run/Queue/Hold/RunLim) | 4/ 0/ 0/1200 | 4/ 0/ 0/1200
--
note: "core" limit is for per-core assignment jobs (jobtype=core/gpu*)

Queue Status (H):
--
 job | free | free | # jobs | requested
 type | nodes | cores (gpus) | waiting | cores (gpus)
--
week jobs
--
1-4 vnodes | 705 | 90240 | 0 | 0
5+ vnodes | 505 | 64640 | 0 | 0
largemem | 0 | 0 | 0 | 0
core | 179 | 23036 | 0 | 0
gpu | 0 | 0 (0) | 0 | 0 (0)
--

long jobs
--
1-4 vnodes | 325 | 41600 | 0 | 0
5+ vnodes | 225 | 28800 | 0 | 0
largemem | 0 | 0 | 0 | 0
core | 50 | 6400 | 0 | 0
gpu | 0 | 0 (0) | 0 | 0 (0)
--
Job Status at 2023-01-29 17:40:12

"core (Run/Queue/Hold/RunLim)" in User/Group Stat is a CPU cores limit for jobtype=core/gpu* jobs, where CPU cores used by
jobtype=vnode/largemem jobs are not taken into account. For example, in this example, you can use up to 1200 cores in total.

Example: show status of jobs

You can see the latest status of jobs by specifying "-c" option. (-l option can be added but is ignored.)

ccfep% jobinfo -c

--
Queue Job ID Name Status CPUs User/Grp Elaps Node/(Reason)
--
H 9999900 job0.csh Run 16 zzz/--- 24:06:10 ccc047
H 9999901 job1.csh Run 16 zzz/--- 24:03:50 ccc003
H 9999902 job2.sh Run 6 zzz/--- 0:00:36 ccc091
H 9999903 job3.sh Run 6 zzz/--- 0:00:36 ccc091
H 9999904 job4.sh Run 6 zzz/--- 0:00:36 ccc090
...
H 9999989 job89.sh Run 1 zzz/--- 0:00:11 ccg013
H 9999990 job90.sh Run 1 zzz/--- 0:00:12 ccg010
--

If you don't specify "-c", you can also see some more details (jobtype and number of gpus). The information may be slightly (2-
3 minutes usually) old, though.

ccfep% jobinfo
--
Queue Job ID Name Status CPUs User/Grp Elaps Node/(Reason)
--
H(c) 9999900 job0.csh Run 16 zzz/zz9 24:06:10 ccc047
H(c) 9999901 job1.csh Run 16 zzz/zz9 24:03:50 ccc003
H(c) 9999902 job2.sh Run 6 zzz/zz9 0:00:36 ccc091
H(c) 9999903 job3.sh Run 6 zzz/zz9 0:00:36 ccc091
H(c) 9999904 job4.sh Run 6 zzz/zz9 0:00:36 ccc090
...
H(g) 9999989 job89.sh Run 1+1 zzz/zz9 0:00:11 ccg013
H(g) 9999990 job90.sh Run 1+1 zzz/zz9 0:00:12 ccg010
--

Example: show working directory

In case you forget where you ran jobs, try "-w" option. The working directories will be shown like below.

ccfep% jobinfo -w
--
Queue Job ID Name Status Workdir
--
H 9999920 H_12345.sh Run /home/users/zzz/gaussian/mol23
H 9999921 H_23456.sh Run /home/users/zzz/gaussian/mol74
...

(You can't use "-c" in this case.)

Submit Your Jobs

Description of the header part

Your have to write a script file which is written in C-shell to submit your job. An example for each system is following.

csh, bash (/bin/sh), zsh can be used for the job submission script.
lines started with #PBS are common, regardless of the shell type.
Sample scripts can be found in ccfep:/local/apl/lx/(application name)/samples/.

Meaning Header part Importance

The First Line
(csh) #!/bin/csh -f
(bash) #!/bin/sh
(zsh) #!/bin/zsh

Required
(choose one)

Needed Number of CPU #PBS -l select=[Nnode:]ncpus=Ncore:mpiprocs=Nproc:ompthreads=Nthread:jobtype=Jobtype[:ngpus=Ngpu] Required
Wall Time #PBS -l walltime=72:00:00 Required
Mail at Start and End #PBS -m abe Optional
Prevent Rerun #PBS -r n Optional
Change to Submitted
Directory cd ${PBS_O_WORKDIR} Recommended

Nnode: # of physical node or virtual node
Ncore: # of reserved cores per physical node or virutal node

largemem, vnode: 64 (for virtaul node) or 128 (for physical node)
Nproc: # of processes per node
Nthread: # of threads per process
Jobtype: largemem, small, core, gpu, gpup, gpuv

large: 7.875GB / core
vnoe: 1.875GB / core
core: job for less than 63 cores
gpu: GPU jobs

Ngpu: # of GPUs

example 1: use 5 nodes (640 (128*5) cores, 320 (64*5) MPI)

#PBS -l select=5:ncpus=128:mpiprocs=64:ompthreads=2

example 2: use 10 vnodes (64 for each) (640 (64*10) cores, 320(32*10) MPI)

#PBS -l select=10:ncpus=64:mpiprocs=32:ompthreads=2

example 3: 16-core (16 MPI)

#PBS -l select=1:ncpus=16:mpiprocs=16:ompthreads=1

example 4: 16-core (16 OpenMP) + 1 GPU

#PBS -l select=1:ncpus=16:mpiprocs=1:ompthreads=16:ngpus=1

note: there are 8 GPUs in a node. # of CPU cores per GPU (ncpus/ngpus) must be <= 16.

example 5: 64 cores (1 vnode), large memory node (~500 GB of memory / vnode)

#PBS -l select=1:ncpus=64:mpiprocs=32:ompthreads=2:jobtype=largemem

You can find some other examples in this page.

Job submission

After you write the script, type following command to submit.

ccfep% jsub [-q HR[0-9]] [-g XXX] [-W depend=(afterok|afterany):JOBID1[:JOBID2...]] script.csh

If you run too many jobs in a short period of time, penalty might be imposed. If you are planning to run thousands of jobs
in a day, please merge them.
If you want to submit your jobs by 'Supercomputing Consortium for Computational Materials Science' group, use -g
option. (XXX is name of its group)
You can describe dependency of jobs using -W option.
If you want to describe dependency that a job should run after the dependent job exit successfully, use keyword
"afterok".If a job should run after the dependent job including abnormal exit, use keyword "afterany".
Sample script files exist in ccfep:/apl/*/samples/.

https://ccportal.center.ims.ac.jp/en/node/2376

Sequential Jobs (step jobs)

You can easily submit sequential jobs by using --step or --stepany command.

■ step job 1 (afterok): run a series of jobs sequentially. If a job exited abnormally, following jobs will be deleted.

ccfep% jsub -q (H|HR[0-9]) [-g XXX] --step [-W depend=(afterok|afterany):JOBID1[:JOBID2...]] script.csh script2.csh ...

■ step job 2 (afterany): run a series of jobs sequentially. If a job finished, next job will run regardless of the exit
status.

ccfep% jsub -q (H|HR[0-9]) [-g XXX] --stepany [-W depend=(afterok|afterany):JOBID1[:JOBID2...]] script.csh script2.csh ...

Example:

ccfep% jsub -q H --stepany job1.csh job2.csh job3.csh

Define variables which can be used in jobscript

You can define variables via -v option. The argument to the option is comma-separated list of variable definitions, (variable-
name)=(value).

ccfep% jsub -v INPUT=myfile.inp,OUTPUT=myout.log script.sh

In this example, $INPUT and $OUTPUT will be set to myfile.inp and myout.log in "script.sh", respectively.

Notes:

if multiple -v is specified, only the last one will be active.
this can't define ncpus, jobtype etc. values in select= section of the jobscript.

Delete Jobs

First of all, you should get ID of the target jobs using "jobinfo" command. Then, run following command, where the RequestID is
the job id.

ccfep% jdel RequestID

Hold/Release Jobs

You can prevent queued job to run by the following command (hold a job, in other words). (Use jobinfo to get target job id.)

ccfep% jhold RequestID

You can release the restiction using jrls command.

ccfep% jrls RequestID

Get Information of Finished Jobs

You can get information of finished jobs, such as finish time, elaps time, parallel efficiency, by joblog command.

ccfep% joblog [-d ndays] [-o item1[,item2[,...]]]

If the target period is not specified, information about jobs of current FY will be shown. Following options can be used to specify
the target period.

-d ndays: jobs finished within last "ndays"
-d 7 : jobs finished within last 7 days

-y year: jobs in FY "year"
-y 2021 : jobs in FY 2021 (2021/4-2022/3)

-f YYYY[MM[DD[hh[mm]]]] -t YYYY[MM[DD[hh[mm]]]]: from-to specification. (month, day, hour, etc. can be omitted)
-f 202107 -t 202108 : jobs finished in July or August of year 2021.

You can customize items which are displayed in -o option. Available keywords are:

queue: Queue name
jobid: Job ID
user: User name
group: Group name
node: Job head node name
Node: All node names
type: jobtype
start: Start time（YYYY/MM/DD HH:MM）
Start: Start time（YYYY/MM/DD HH:MM:SS）
finish: Finish time（YYYY/MM/DD HH:MM）
Finish: Finish time（YYYY/MM/DD HH:MM:SS）
elaps: Elaps
cputime: Total CPU time
used_memory: Used memory size
ncpu: Number of reserved cpu cores
ngpu: Number of reserved gpus
nproc: Number of MPI processes
nsmp: Number of threads per process
peff: Efficiency of job
attention: Bad efficiency job
command: Job name
point: CPU points
all: show all

■ e.g. 1: Show job ID, start and end datetime, CPU points of jobs finished within last 10 days.

ccfep% joblog -d 10 -o jobid,start,finish,point

■ e.g. 2: Show job ID, end datetime, CPU points, and workding directory of jobs in FY2020.

ccfep% joblog -y 2020 -o jobid,finish,point,Workdir

■ e.g. 3: Show all the parameters of jobs finished within last two days.

ccfep% joblog -d 2 -o all

Build and Run

Command to Build

gcc, aocc, NVIDIA HPC SDK are already installed.
For Intel oneAPI, only the libraries are installed. Compilers (icc, ifort, icpc etc.) are not installed. If you need Intel
compilers, please install oneAPI Base Toolkit or/and oneAPI HPC Toolkit by yourself into your directory.
For gcc, system default one (8.5) and gcc-toolset ones (versions 9.2, 10.3, and 11.2) are installed. You can use gcc-
toolset gccs by module command. (e.g. module load gcc-toolset/11)

Please also check the package program list page for the available libraries and MPI environments.

How to load my oneAPI environment

oneAPI Base Toolkit can be downloaded from this page. Compilers, MKL, and MPI are included. Please use offline or online one
for Linux. You need to install oneAPI HPC Toolkit if you need fortran compiler (ifort, ifx). Please download from this page.

For bash users, following module method can work. But just loading ~/intel/oneapi/setvars.sh is easier.
You can use individual component of oneAPI such as compilers and MKL by loading "vars.sh" file in each component directory.
(e.g. source ~/intel/oneapi/compiler/latest/env/vars.sh)

We here introduce a simple way using module command. There maybe several ways to do it.
It is assumed that oneAPI is already installed under ~/intel.

$ cd ~/intel/oneapi
$ sh modulefiles-setup.sh
$ cd modulefiles/

https://ccportal.center.ims.ac.jp/en/installed_applications
https://www.intel.com/content/www/us/en/developer/tools/oneapi/base-toolkit.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/hpc-toolkit.html#gs.ritrzd

$ module use .
$ module save

This will gather oneapi module files into modulesfiles/ directory and that directory is registered in the module search path.
Final module save command saves the setting. The saved environment will be restored upon login in RCCS system.
If you want to use Intel compilers, you need to run "module load compiler/latest".
(Please check "module avail" for details about packages and their versions.)

You can load compilers and other packages before "module save".
In this case, you can use compilers and libraries immediately after your next login.

$ cd modulefiles/
$ module use .
$ module load compiler/latest
$ module load mkl/latest
$ module load mpi/latest
$ module save

If you want to remove saved module environment, please try "module saverm". Please note that your saved environment is
independent from the system default setting. Changes in the system default setting do nothing to your environment.

Running Parallel Program

Please specify correct numbers of MPI processes and OpenMP threads in "mpiprocs" and "ompthreads" values of select line in
your job script.
e.g. 12 CPUs, 4 MPI processes and 3 OpenMP threads case -> ncpus=12:mpiprocs=4:ompthreads=3

Please also check sample jobs scripts by RCCS (locating at /apl/(software name)/samples).

■ Number of threads specification for OpenMP jobs

When submitting job using "jsub", the value specified by "ompthreads" is considered as number of OpenMP threads.
You can specify or change the value by setting OMP_NUM_THREADS envirnment variable manually.
If you run a command not via "jsub" (on frontend node for example), you should set OMP_NUM_THREADS environment variable
manually.

■ Host list specification for MPI

List of hosts can be found in the file name specified in PBS_NODEFILE environment variable.
MPI environments installed by RCCS (Intel MPI and OpenMPI) automatically consider this environment variable.
Therefore, you can skip specification of machine file when invoking "mpirun" command.

e.g. 4 MPI * 3 OpenMP hybrid parallel

#!/bin/sh
#PBS -l select=1:ncpus=12:mpiprocs=4:ompthreads=3:jobtype=core
#PBS -l walltime=24:00:00
cd $PBS_O_WORKDIR
mpirun -np 4 /some/where/my/program options

OpenMP thread number is determined from the value specified by "ompthreads" in select. (equivalent to
OMP_NUM_THREADS=3)
MPI machine file name can be omitted when invoking mpirun (if that mpirun is installed by RCCS).

You can specify machine file to filename specified in PBS_NODEFILE env variable. (This doesn't change anything.)

Environment Modules

In jobscript, csh users need to run "source /etc/profile.d/modules.csh" before using module command.
In the jobscript, "source /etc/profile.d/modules.csh" is necessary for /bin/bash users.
". /etc/profile.d/modules.sh" is necessary for /bin/sh or /bin/bash jobscript if your login shell is /bin/csh

You should add -s to module command in the script. (e.g. module -s load openmpi/3.1.6)
You can save current module status by "module save" command. The saved status will be restored automatically upon
login.
In case "setvars.sh" is loaded in ~/.bashrc, sftp (including WinSCP) failed to connect to ccfep due to the output from that
script.

You may be able to avoid this error by discarding output from setvars.sh like "source ~/intel/oneapi/setvars.sh >&
/dev/null"
(Load setvars.sh only if $PS1 is not null should work. Just move that line to ~/.bash_profile may also work.)

See this page for detailed information.

Package Programs

The installed pacakge programs for each systems are listed in https://ccportal.ims.ac.jp/en/installed_applications.
You can see the similar list by "module avail" command. (To quit module avail, press "q" key or scroll to the bottom of the
page.)
Sample script files are located in ccfep:/apl/appname/samples/.
Installed directories are located in /apl/appname/ on each systems.
Applications compiled by center are listed in https://ccportal.ims.ac.jp/en/how_to_configure with detail description.
Many software is quitting preparation of config script in csh. We recommend csh users to use module command.

Request installation you want to use

Please fill the following items and send it rccs-admin[at]ims.ac.jp.

Software name and version that you want to use
Overview of the software and its feature
Necessity of installation to supercomputers in RCCS
URL of the software development

Special Commands of RCCS

Related Queueing System

You can find descriptions about "jobinfo", "jsub", "jdel", "jhold", "jrls", and "joblog" above in this page.

Submitting Gaussian Jobs

■ Case of Gaussian 16

ccfep% g16sub [-q "QUE_NAME"] [-j "jobtype"] [-g "XXX"] [-walltime "hh:mm:ss"] [-noedit] \
 [-rev "g16xxx"] [-np "ncpus"] [-ngpus "n"] [-mem "size"] [-save] [-mail] input_files

Command "g09sub" are also available to use Gaussian 09.
Default walltime is set to 72 hours. Please set excepted time for calculation and extra to do long job or run early.
If you want to know the meaning of options and examples, please just type "g16sub".
%mem, %nproc, %cpu in the original input files will be overwritten by g16sub / g09sub. Please specify those values with -
mem, -np etc. command line options.

You can prevent this automatic overwrite by -noedit option. But this is not recommended.
Safe maximum %mem value will be automatically assigned by g09sub/g16sub. You may not need to set that
manually unless you need to reduce the amount of memory.

If you want to use large memory node (jobtype=largemem) you need to add "-j largemem".
Jobtype=vnode will be used if -np 64 or -np 128 is specified.

basic usage (8 cores、72 hours)

[user@ccfep somewhere]$ g16sub input.gjf

more cores, more longer (16 cores、168 hours)

[user@ccfep somewhere]$ g16sub -np 16 --walltime 168:00:00 input.gjf

To use formchk, please check this FAQ item.

Job wait time estimator (waitest)

On ccfep, you can estimate start time of job with "waitest" command, where waitest assumes jobs will run for the time specified
with "walltime" parameter". Therefore, the estimated datetime will be the worst case estimation. On the other hand, other
user's jobs submitted later might run earlier than your ones. (Many parameters, such as job priority, jobtype, and remedies for
(small) groups, are involved.) You shouldn't expect high accuracy for the estimation. You may also need to check queue status
(jobinfo -s) additionally.

Basic Usage

Estimate start time of submitted job(s):

$ waitest [jobid1] ([jobid2] ...)

https://ccportal.center.ims.ac.jp/en/node/2123
https://ccportal.center.ims.ac.jp/installed_applications
https://ccportal.center.ims.ac.jp/en/how_to_configure
mailto:ccadm%5Bat%5Ddraco.ims.ac.jp
mailto:user@ccfep
mailto:user@ccfep
https://ccportal.center.ims.ac.jp/en/frequently%20asked%20questions#faq-Cannot-use-formchk-(Gaussian-checkpoint-file-converter)?

Estimate start time of not yet submitted job(s):

$ waitest -s [job script1] ([jobscript2] ...)

Example 1: estimate start time of a submitted job

[user@ccfep2]$ waitest 4923556
Current Date : 2023-02-15 14:32:30
2023-02-15 14:32:30 ...
2023-02-15 16:40:44 ...
2023-02-15 22:26:07 ...
2023-02-16 00:43:43 ...
2023-02-16 03:03:11 ...
2023-02-16 05:58:00 ...
2023-02-16 11:34:12 ...
Job 4923556 will run at 2023-02-16 13:03:11 on ccc500.
Estimation completed.

Example 2: estimate start time of not yet submitted jobs

[user@ccfep2]$ waitest -s vnode4N1D.sh vnode1N1D.sh

Job Mapping "vnode4N1D.sh" -> jobid=1000000000
Job Mapping "vnode1N1D.sh" -> jobid=1000000001

Current Date : 2023-09-06 16:43:10
2023-09-06 16:43:10 ...
2023-09-06 18:43:42 ...
2023-09-06 21:19:19 ...
Job 1000000001 will run at 2023-09-06 21:39:34 on ccf013.
2023-09-06 22:02:09 ...
2023-09-07 01:02:14 ...
2023-09-07 03:34:18 ...
Job 1000000000 will run at 2023-09-07 05:28:07 on ccc428,ccc571,ccc356,ccc708.
Estimation completed.

(In some case, larger jobs will run first due to the job priority and other parameters.)

Example 3: show periodically estimated wait time for general types of jobs

For some of basic types of jobs, wait time for those jobs are estimated periodically. The result can be accessed via the following
command.

[user@ccfep2]$ waitest --showref

Showing Used Resources

ccfep% showlim (-cpu|-c|-disk|-d) [-m]

-cpu|-c: Show used point and limited value.
-disk|-d: Show current disk size and limited value.
-m: Show values of each members.

■ example 1: show CPU points (approved and used) of YOU and WHOLE YOUR GROUP

ccfep% showlim -c

■ example 2: show CPU points (approved and used) of YOU, YOUR GROUP MEMBERS, and WHOLE GROUP

ccfep% showlim -c -m

■ example 3: show disk status (approved and used) of YOU, YOUR GROUP MEMBERS, and WHOLE GROUP

ccfep% showlim -d -m

Utility Commands for Batch Jobs

Limit the walltime of command

ps_walltime command which was provided from RCCS was deleted. Please use timeout command instead.

Showing statistic of current job

jobstatistic command which was provided from RCCS was deleted. Please use joblog command instead.

Manipulation of Files on Computation Nodes

You can access local files on computation nodes which cannot be directly accessed from the frontend nodes (ccfep) via "remsh"
command.

remsh hostname command options

hostname: Hostname such as cccc???, cccca???, ccnn???, or ccnf???.
command: Command to be executed on the node. Acceptable commands are ls, cat, cp, head, tail, and find.
options: Options of command.

Example: how to access ramdisk of a computation node, ccnnXXX, by user "zzz"

remsh ccnnXXX ls /ramd/users/zzz

remsh ccnnXXX tail /ramd/users/zzz/99999/fort.10

Host names and jobids of your jobs can be found in the output of "jobinfo" command. (see above for the usage)

Inquiry

See https://ccportal.ims.ac.jp/en/contact.

https://ccportal.ims.ac.jp/en/contact

	RCCS Reference Manual
	[Last update] 2024-Mar-21

	Table of Contents
	Connection
	Login to RCCS
	Register SSH Public Key and Password for Web
	First registration / Missing your username or password for web
	Using your username and password for web

	Login Shell

	Whole System of RCCS
	RCCS Resources
	CPU Points and Queue Factor
	Checking Resources
	Individulal Limitation of Resources

	Queueing System
	Overview of Queueing System
	Queue Classes
	Queue class for all users
	Special queue class

	Show Job Status
	choose additional information type
	jobs of other users
	queue specification
	Example: show queue summary
	Example: show status of jobs
	Example: show working directory

	Submit Your Jobs
	Description of the header part
	example 1: use 5 nodes (640 (128*5) cores, 320 (64*5) MPI)
	example 2: use 10 vnodes (64 for each) (640 (64*10) cores, 320(32*10) MPI)
	example 3: 16-core (16 MPI)
	example 4: 16-core (16 OpenMP) + 1 GPU
	example 5: 64 cores (1 vnode), large memory node (~500 GB of memory / vnode)
	Job submission
	Sequential Jobs (step jobs)
	step job 1 (afterok): run a series of jobs sequentially. If a job exited abnormally, following jobs will be deleted.
	step job 2 (afterany): run a series of jobs sequentially. If a job finished, next job will run regardless of the exit status.

	Define variables which can be used in jobscript

	Delete Jobs
	Hold/Release Jobs
	Get Information of Finished Jobs
	e.g. 1: Show job ID, start and end datetime, CPU points of jobs finished within last 10 days.
	e.g. 2: Show job ID, end datetime, CPU points, and workding directory of jobs in FY2020.
	e.g. 3: Show all the parameters of jobs finished within last two days.

	Build and Run
	Command to Build
	How to load my oneAPI environment

	Running Parallel Program
	Number of threads specification for OpenMP jobs
	Host list specification for MPI

	Environment Modules

	Package Programs
	Request installation you want to use

	Special Commands of RCCS
	Related Queueing System
	Submitting Gaussian Jobs
	Case of Gaussian 16

	basic usage (8 cores、72 hours)
	more cores, more longer (16 cores、168 hours)

	Job wait time estimator (waitest)
	Basic Usage
	Example 1: estimate start time of a submitted job
	Example 2: estimate start time of not yet submitted jobs
	Example 3: show periodically estimated wait time for general types of jobs

	Showing Used Resources
	example 1: show CPU points (approved and used) of YOU and WHOLE YOUR GROUP
	example 2: show CPU points (approved and used) of YOU, YOUR GROUP MEMBERS, and WHOLE GROUP
	example 3: show disk status (approved and used) of YOU, YOUR GROUP MEMBERS, and WHOLE GROUP

	Utility Commands for Batch Jobs
	Limit the walltime of command
	Showing statistic of current job

	Manipulation of Files on Computation Nodes
	Example: how to access ramdisk of a computation node, ccnnXXX, by user "zzz"

	Inquiry

